Philosophical Magazine Series 6

Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tphm17

LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin

William Sutherland a

a Melbourne

Published online: 15 Apr 2009.

To cite this article: William Sutherland (1905) LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin, Philosophical Magazine Series 6, 9:54, 781-785, DOI: 10.1080/14786440509463331

To link to this article: http://dx.doi.org/10.1080/14786440509463331

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan,
Dynamical Theory of Diffusion for Non-Electrolytes. 781

integral passes from 0 to \(1/\beta\), as \(a\) passes through the value \(\beta^*\).

If the aperture of \(LL\) be reduced to a narrow annulus, the integral to be considered is

\[
\int_0^\infty J_0(ax)J_0(\beta x)x\,dx.
\]

This assumes an infinite value when \(a = \beta\).†

If the apertures be rectangular, the integrals take still simpler forms.

LXXV. A Dynamical Theory of Diffusion for Non-Electrolytes and the Molecular Mass of Albumin. By William Sutherland ‡.

In a paper communicated to the Australian Association for the Advancement of Science at Dunedin, 1904, on the Measurement of Large Molecular Masses, a purely dynamical theory of diffusion was outlined, with the aim of getting a formula for calculating from the data of diffusion those large molecular masses for which the ordinary methods fail. The formula obtained made the velocity of diffusion of a substance through a liquid vary inversely as the radius \(a\) of its molecule and inversely as the viscosity of the liquid. On applying it to the best data for coefficients of diffusion \(D\) it was found that the products \(aD\), instead of being constant, diminished with increasing \(a\) in a manner which made extrapolation with the formula for substances like albumin seem precarious. After looking a little more closely into the dynamical conditions of the problem, it seems to me that the diminution of \(aD\) can be accounted for, and can be expressed by an empirical formula which enables us to extrapolate with confidence for a value of \(a\) for albumin, and so to assign for the molecular mass of albumin a value whose accuracy depends on that with which \(D\) is measured.

The theory is very similar to that of "Ionization, Ionic Velocities and Atomic Sizes" (Phil. Mag. Feb. 1902). Let a molecule of solute of radius \(a\) move with velocity \(V\) parallel to an \(x\) axis through the dilute solution of viscosity \(\eta\). Then the resistance \(F\) to its motion is given by Stokes’s formula

\[
F = 6\pi V\eta a \frac{1+2\eta/\beta a}{1+3\eta/\beta a} \ldots \ldots \ldots (1)
\]

† See ‘Theory of Sound,’ § 203, equations (14), (16).
‡ Communicated by the Author.

3 F
where β is the coefficient of sliding friction if there is slip between the diffusing molecule and the solution. For N molecules of solute per c.c. of solution the total resistance will be N times this, and in the steady state of diffusion will equilibrate the driving force due to variation of the osmotic pressure of the solute, namely dp/dx, which by the osmotic laws is $RTdc/dx$, if c is the concentration of the solute at x and R is the gas constant. Hence

$$RT \frac{dc}{dx} = 6\pi \eta a N \frac{1 + 2\eta/\beta a}{1 + 3\eta/\beta a} . . . (2)$$

and the required formula for the coefficient of diffusion with C for the number of molecules in a gramme-molecule is

$$D = \frac{RT}{6\pi \eta a C} \frac{1 + 3\eta/\beta a}{1 + 2\eta/\beta a} (3)$$

If $\beta = \infty$, that is, if there is no slipping of solution at surface of molecule, aD is the same for all molecules diffusing through a given solvent at a given temperature. Now for a large molecule of solute moving amongst smaller ones of solvent, we can see that the slipping is probably small. But in the other extreme case of a small molecule of solute moving amongst larger ones of solvent, an effect analogous to slipping will occur, since the small molecule will travel a good deal in the gaps which would be left if the molecules of solvent were forced almost into permanent contact. We have thus two extreme cases of the formula.

When $\beta = 0$,
$$D = \frac{RT}{4\pi \eta a C}$$

and when $\beta = \infty$,
$$D = \frac{RT}{6\pi \eta a C}$$

Thus with increasing values of a we should have aD diminishing from the upper limit $RT/4\pi \eta C$, when a is small, to the lower limit $RT/6\pi \eta C$, when a is large. This is analogous to the actual behaviour of B^aD obtained from experiment, B being the volume of the molecules in a gramme-molecule of solute. The first of the following tables contains the coefficients of diffusion for various gases through water determined by Hüfner *. I have reduced these all to a temperature of $16^\circ C.$, and expressed them with the second as unit of time instead of the day. The values of B are taken mostly from “Further Studies on Molecular Force” (Phil. Mag. [6] xxxix.). In the second last row are given the values of

of Diffusion for Non-Electrolytes.

$10^6 B D$ which we are studying. H. Euler's values for the diffusion coefficients of Cl_2 and Br_2 are added at the right hand of the table:

<table>
<thead>
<tr>
<th></th>
<th>CO_2</th>
<th>NH_3</th>
<th>O_2</th>
<th>N_2</th>
<th>N_2O</th>
<th>Cl_2</th>
<th>H_2</th>
<th>Cl_2</th>
<th>Br_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^6 B D$</td>
<td>166</td>
<td>132</td>
<td>167</td>
<td>178</td>
<td>156</td>
<td>127</td>
<td>474</td>
<td>154</td>
<td>101</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
<td>21</td>
<td>19.3</td>
<td>22.7</td>
<td>29</td>
<td>38</td>
<td>8.6</td>
<td>38</td>
<td>52</td>
</tr>
<tr>
<td>$10^6 B D$</td>
<td>51</td>
<td>36</td>
<td>44</td>
<td>50</td>
<td>48</td>
<td>43</td>
<td>97</td>
<td>52</td>
<td>38</td>
</tr>
<tr>
<td>10^6 calcul.</td>
<td>44</td>
<td>50</td>
<td>51</td>
<td>48</td>
<td>44</td>
<td>40</td>
<td>73</td>
<td>40</td>
<td>37</td>
</tr>
</tbody>
</table>

In the next table the coefficients of diffusion are those found by Thovert for a number of non-electrolytes in water (Comptes Rendus, cxxxv.).

Alcohols.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^6 B D$</td>
<td>137</td>
<td>111</td>
<td>99</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>B</td>
<td>26</td>
<td>42.5</td>
<td>52</td>
<td>59</td>
<td>75.5</td>
</tr>
<tr>
<td>$10^6 B D$</td>
<td>41</td>
<td>39</td>
<td>37</td>
<td>38</td>
<td>37</td>
</tr>
<tr>
<td>10^6 calcul.</td>
<td>46</td>
<td>39</td>
<td>37</td>
<td>36</td>
<td>33</td>
</tr>
</tbody>
</table>

Other Substances.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^6 B D$</td>
<td>98</td>
<td>87</td>
<td>79</td>
<td>80</td>
<td>73</td>
<td>75</td>
</tr>
<tr>
<td>B</td>
<td>51</td>
<td>75</td>
<td>72</td>
<td>80</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>$10^6 B D$</td>
<td>36</td>
<td>37</td>
<td>33</td>
<td>34</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>10^6 calcul.</td>
<td>37</td>
<td>33</td>
<td>34</td>
<td>33</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^6 B D$</td>
<td>66</td>
<td>57</td>
<td>55</td>
<td>57</td>
<td>41</td>
<td>35.5</td>
</tr>
<tr>
<td>B</td>
<td>90</td>
<td>134</td>
<td>141</td>
<td>166</td>
<td>254</td>
<td>374</td>
</tr>
<tr>
<td>$10^6 B D$</td>
<td>30</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>10^6 calcul.</td>
<td>32</td>
<td>29</td>
<td>29</td>
<td>28</td>
<td>26</td>
<td>25</td>
</tr>
</tbody>
</table>

In spite of irregularities it can be seen that the chief tendency is for the product $10^6 B D$ to diminish with increasing value of B and to seemingly converge to a lower limit, as is required by the theory. But the case of H_2 makes it impossible to recognize convergence to the upper limit required by the theory. The other gases in an irregular way fall in with the idea of convergence to an upper limit.
Dynamical Theory of Diffusion for Non-Electrolytes.

Under the circumstances it seems to me best to express the connexion between \(D \) and \(B^3 \) by an empirical equation, namely:

\[10^6 B^4 D = b + k/B^3, \quad \ldots \ldots \quad (5) \]

where \(b \) and \(k \) are constants for a given solvent at a given temperature. For water at 16°C, \(b = 21 \), and \(k = 220 \), and with these values the last row of numbers in the previous tables marked "calcu." have been obtained. This empirical formula gives a connexion between velocity of diffusion and molecular radius for substances ranging from hydrogen with a molecular mass 2 to raffinose with a molecular mass 500. It makes \(10^6 B^4 D = 21 \) when \(B^3 \) is large. For molecules of large radius we have thus good reason to rely on the relation

\[10^6 B^4 D = 21 \quad \ldots \ldots \quad (6) \]

as approximately true. To illustrate its application we can use it to calculate the molecular mass of egg albumin from the value of \(10^7 D \) calculated by Stefan from Graham's data, namely 7. This makes \(B^3 = 30 \), and \(B = 27,000 \). This is the volume of a gramme-molecule of egg albumin.

Representative minimum molecular formulae for albumin obtained from chemical considerations are given in Cohnheim's "Chemie der Eiweisskörper." Hofmeister for serum albumin gives \(C_{432}H_{720}N_{116}O_{140}S_6 \) with a molecular weight (mass) 10166. For egg albumin he gives a minimum of 5378. For hæmoglobin Hüfner and Jaquet assign 16669 for the minimum molecular mass. From the lowering of the freezing-point in albumin solutions Sabanajew and Alexandrow found for egg albumin the molecular mass 14270, but the experimental error due to impurities allows little reliance to be placed on this estimate. Now to pass from the gramme-molecular volume 27000 to the molecular mass we may proceed thus. From the values of \(B \) published in previous papers of mine we can estimate the limiting volume of a gramme-atom of \(C \) as 8, of \(H \) as 4, of \(N \) as 8, of \(O \) as 6, and of \(S \) as 18. The average percentage composition of egg albumin is \(C 52.5 \), \(H 7.2 \), \(N 15.3 \), \(O 23.5 \), and \(S 1.5 \). Hence if \(x \) is the number of carbon atoms in the molecule of egg albumin we have the equation

\[x \left\{ 8 + \frac{12}{52.5} \left(4 \cdot \frac{7.2}{1} + 8 \cdot \frac{15.3}{14} + 6 \cdot \frac{23.5}{16} + 18 \cdot \frac{1.5}{32} \right) \right\} = 27000 \]

and \(x = 1436 \). Thus the Graham-Stefan coefficient of diffusion leads to \(\text{C}_{1436}\text{H}_{2304}\text{N}_{359}\text{O}_{462}\text{S}_{15} \) as the formula for egg albumin, the molecular mass being 32814, which is a small multiple of
the above minima. But as the preparation of pure crystal-
lized albumins was not known in Graham's day, it is necessary
that his diffusion experiments should be repeated with various
pure albumins and with their products of disintegration, such
as peptones, if we are to arrive at accurate estimates of the
size of albumin molecules and their parts.

Melbourne, March 1905.

LXXVI. On the Stresses in the Earth's Crust before and after
the Sinking of a Bore-hole. By C. Ghree, Sc.D., LL.D.,
F.R.S.*

CONTENTS.
§ 1. Introduction.
2. Tendency to rupture.
3. Notation.
4. Homogeneous isotropic gravitating sphere.
5. Composite gravitating sphere, crust, and nucleus.
6. Spheroidal rotating "Earth."
7. Solid vertical prism under gravity and pressure.
8. Hollow vertical cylinder under gravity and pressure.
9. Solid prism under pressure.
10. Hollow cylinder under pressure.
11. Solid sphere under pressure.
12. Hollow sphere under pressure.
14-20. Applications to the Earth.

§ 1. In 'Nature,' October 20, 1904, p. 602, there appeared
letters by Mr. G. Martin and the Hon. C. A.
Parsons dealing with the size of the stresses in the Earth's
crust and speculating as to what would happen if a hole were
bored to a depth of twelve miles.

The letters indicate that some interest attaches to the
problem, but its true character seems to stand in need of care-
ful consideration. We know at present so little of the nature of
the earth's material, even at such small depths as twelve miles,
and have such scanty knowledge of the combined effects of
high temperature and high pressure, that there are no data
for making an exact calculation. Rocks as we know them
at the earth's surface are not isotropic or even homogeneous
solids, and they are not perfectly elastic for any considerable
stresses†; but the crust of the earth seems to behave as a
solid so far as can be inferred from earthquake-waves, and
nothing that is positively known forbids the hypothesis that
the material a few miles down is elastic for moderate changes

* Communicated by the Physical Society: read March 10, 1905.
† Japanese Earthquake Investigation Committee, Reports No. 17.